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ABSTRACT 

The solution of the optimal linear regulator problem with a qua- 
dratic cost functional involves a time-varying mat r ix  (the solution 
of a matrix Riccati differential equation) in the feedback loop. One 
suboptimal approach to the problem which simplifies implementa- 
tion is to let the time-varying mat r ix  be piecewise constant. A 
computer program is presented here  which calculates the (sub) 
optimal feedback gains under this constraint, where the plant, cost 
functional, and switching t imes a r e  specified a pr ior i ,  and results 
a r e  obtained for a third-order example. 
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1. INTRODUCTION 

The solution of the optimal l inear regulator problem with qua- 

draticcost in feedback form expresses the control vector as a gain 

matrix multiplying the state vector.  For  problems with a fixed t e rmi -  

nal t ime,  this gain comes from the time-varying solution of a matr ix  

Riccati equation. Since the Riccati equation must be solved off-line, 

implementation of such a control may lead to  severe storage and 

synchronization problems. 

Kleinman recognized this drawback and in his Ph. D. thesis1* he 

derived a necessary condition fo r  optimality when the t ime de- 

pendence of the feedback gain matrix i s  constrained to  have a certain 

form. In the case of a piecewise constant gain, he also suggested 

an iterative procedure for determining a solution of the necessary 

condition. The purpose of this  work i s  to incorporate Kleinman's 

iterative scheme into a complete computer 91 nnrithm. ------ 
In Section 11 the optimal l inear regulator problem is formulated 

and modified slightly to accommodate piecewise constant feedback 

gains; then the new optimization problem is  stated and the neces-  

s a r y  condition for optimality is  given. Ln Section 111 the iterative 

scheme f o r  satisfying the necessary condition is described, and the 

basic steps of ths c o i ~ ~ p u t e r  a l p r i t h m s  a r e  shown in the form of a 

flow char t .  The program steps and problems of e r r o r  control a r e  

then discussed in more detail. Numerical resul ts  a r e  discussed in 

Section IV. 

Given a system to be controlled, a cost functional, and switching 

t imes,  the program generates the appropriate gain mat r ices  for a 

suboptimal feedback control law. A basic assumption he re ,  in the 

absence of a sufficient condition for optimality, i s  that the optimal 

gains exist and a r e  unique. 

condition has no extraneous solutions to  which the i terative pro- 

cedure may converge. 

It is also assumed that the necessary 



11. PROBLEM FORMULATION AND NECESSARY CONDITION 

The l inear  regulator problem involves a t ime -invariant system 

governed by a differential equation 

x(t ) = x - 0  -0 

where - x(t) i s  the state and u(t) i s  the control.* The optimal con- 

t ro l  u*(t), to 5 t 5 T,  i s  that which minimizes the quadratic cost 

functional, 

T 

where - F and - Q a r e  positive semidefinite, constant mat r ices  which 

a r e  not both zero.  The optimal solution i s  well-known (see Athans 

and Falb, Reference 2 ,  Chapter 9 ) ,  and i s  specified in the feed- 

back form, 

A 
u*(t) = -_B_K(t)x(t) = - P ( t ) x ( t )  - (3 )  

where _K(t) i s  the symmetr ic ,  positive semidefinite solution of the 

mat r ix  Riccati differential equation, 

K(T) = _F 

To implement the optimal system in real t ime, the optimal feed- 

back matrix L*(t) must be stored on the interval [ to, T I ,  a s  so -  

lutions of the Riccati equation, Eq. 4,  a r e  unstable in the forward 

t ime direction. Recognizing that this could render such a system 

* 
Capital underscored le t te rs  denote ma t r i ces ;  
scored le t ters  a r e  vectors;  the dot indicates differentiation; and 
a pr ime means transpose.  

lower-case under - 

-2- 
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impractical ,  Kleinmanl considered a class of suboptimal feedback 

mat r ices ,  including the case where - W(t) i s  constrained to be piece- 

wise constant. 

Suppose now that one does not wish to  use the optimal control law 

of Eq. 3 .  In particular,  let  - L(t) denote an  a rb i t ra ry  feedback gain 

matr ix ,  so that the closed-loop system becomes 

A 
&(t) = [,A - _B4(t)lEW = _H(t)x(t) 

may be evaluated to be 

( 6 )  
1 '  

= ZX(),v(t0)XO 

semidefinite matr ix  y ( t  ) is given by 0 

and where - @ ( T ,  t) is  the state transition matrix for the closed-loop 

system, Eq. 5 ,  i . e . ,  

By letting the argument of ?(.) vary and differentiating, one obtains 

o r  
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In the system to be considered here, the feedback gain matr ix  i s  

constrained to be piecewise constant, i .  e .  , 

- H(t) = _H(n) = ,A - ,B L(n4 
where the switching times 

t O < t l  < ... < t N - l  < t N e T  

a r e  given. 

simple form 

In this case the transition matr ix  takes on the particularly 

i=O 

In order  to avoid a solution which depends on the initial state x -0’ 
Kleinman chose to  minimize the functional* 

with respect to _L(n), n = 0, 1 , 2 , .  . .N-1, ra ther  than the conventional 

cost functional, Eq. 6. 
To summarize, the optimization problem which is to  be solved is 

the following: 

A suboptimal linear regulator problem 

Given a dynamical system, Eq. 1, and a set  of switching 

t imes {to, t l ,  t 2 ,  . . . T,=T}, determine the se t  of feedback gain 

matrices 

L*(n), n=O, 1 , 2 ,  . . . N-1 

* 
The implications of this a r e  discussed in Ref. 1, pp. 72-76. 
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a t r V  (to) 

8 1 .  .(n) 

such that the t ra jectory of the state of the closed-loop system 

= o  (14) 
I f o r  all n=O, 1, . . .N-1 

k(t)  = [ A  - ,B&*(n)]x(t) = H*(n)x(t), t < t < t 
n- n t l  - - - 

on the interval [ 0,  T] minimizes the functional 

where V ( t  ) i s  given by Eq. 7 .  - 0  

Appealing to  elementary calculus of variations, a necessary con- 

dition for  - L*(.) to extremize tr_V(tO) i s  that 

where 1. .(n) a r e  the elements of the matrix .L(nj. T ie  nwtatisn r L a y  
1J 

be simplified considerably a t  this  point by using the concept of a 

I '  v gradient matrix ' '  3 

whose ( i ,  j)-th element i s  

The calculation of the gradient matrix for  this problem is  straight - 
forward but tedious, and will not be repeated here.* The result is  

that the necessary condition,Eq. 14,becomes 

L 

for n = 0, 1 , 2 ,  . , . N-1 (15) 

* 
This i s  done in meinman, Ref. 1, pp. 84-86, for  a more general 
problem. 
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where - V*(t) sa t isf ies  Eq. 10 with - -  i = @* and e satisfies Eq. 13 

with - H(n) = - H*(n)=A-B -- L*(n). 

form 

Equation 15 may also be written in the 

for n = 0 , 1 , 2 , .  . .N-1 (16) 

In the next section, an i terative procedure for  finding - L*(n), 

n=O, 1 , 2 , .  . .N-1, which satisfy Eq. 16 will be discussed. 

be noted that Eq. 16 i s  not a sufficient condition for optimality, and 

hence one must assume a pr ior i  that an optimum exists and i s  unique. 

Furthermore,  the iterative scheme i s  not foolproof, and it may con- 

verge to  relative minima o r  inflection points, i f  these exist .  

But it should 



111. ITERATIVE CALCULATION OF GAIN MATRICES 

Since the right-hand side of the necessary condition,Eq. 16,de- 

pends on the unknown gains - W(n),  the solution must  be found i t e r -  

atively. 

following:': 

The method proposed by Kleinman (Ref. 1 ,  pp. 98-1 11) is  the 

0 < € 1 1  (17) L it1 (n) = Li(n) t *i (n) - L i ( n ) l ,  - 
n=O, 1, . . . N-1 

where 

t n t ~  

n=O, 1,2, . . . N - 1  

i and where - V 

Kleinman verified that this converges to  - L:k(n) 

quantity 

and - Gi a r e  obtained by using &i in E q s .  i 6  arid 1 3 .  

by showing that the 

i t1 i i s  always positive to  f i r s t  oi-dsr in c .  Thlis i f  t ~ .  > at any i t e r -  
i t1  < pi. ation, E can be decreased and the iteration repeated until p 

F o r  a close enough initial guess, one would expect convergence with 

E = 1, in which case this scheme is analogous t o  the method of SUC - 
cessive approximations. 

The basic steps of the computer algorithm for determining 

- L:::(n), n=O, 1,  . . . ,N-1 ,  a r e  indicated in the flow chart  of Fig.  1, and 

then a re  discussed in more  detail. 

A .  GENERATION OF STARTING VALUES 

1 The initial values - L (n) may be chosen quite arbi t rar i ly ,  a s  long 

a s  the resulting system is stable,  

values,  of course,  the faster  the algorithm will converge. 

The closer  they a r e  to the optimum 

Kleinman 

.I. -I- 

Superscripts a r e  the iteration index. 
-7 - 



Begin 

Get ini t ial  value L (n) 
Repeat for n=O, 1, . a - 1  G- 

Compute z'(t,to) and V'(t) at 

each step on the interval pn, tn+l 1 
4J 

- 

Determine step size 6 for I 
r 4 

the interval 

Compute L (n) from (18) 
5J 

- 

I Compute 2 (tn+l ,to) from (13), 

Repeat for n=O, 1 , ... N-1 

for n=O, 1 ,... N-1 c 

Check: 81 Repeat previous 
iteration wi th e t e / 2  trVi+' - (to)< trVi(tO)? - 

I Compute L ~ + '  (n) from (17) 
Repeat f o r  n=O, 1 , ... N-1 

Fig. 1 Basic Flow Chart 
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proposes the average of the Riccati solution on each t ime interval a s  
a start ing value, i. e .  , 

1 Another possibility is to set all the L (n) equal to the steady-state so -  

lution of the Riccati equation. 

This program will assume that the start ing values a r e  given, a l -  

though a subroutine could easily be added which would generate them. 

B. DETERMINATION OF STEP SIZES 

In any continuous-time problem which i s  to be solved by digital 

computer, the t ime axis must  be made discrete.  In the present case 
A1 1 - LUIIU;Ut~  --- -. cf dividing each time intervai it,, in&, 1 J i ~ t o  X s s h -  .. -a. - n 
intervals,  o r  steps,  each of length 

, n=O, 1,  . . . N - 1  t n t  1 -tn 

Mn 
6 =  n 

The values of - V(t)  and - @(t,tO) a r e  considered only at these discrete 

t imes .  6n!s is chosen to give some desired accuracy 

in the final solutions. 

until par t  E,  when the other computations have been discussed. 

The size of the 
Consideration of this choice wil l  be postponed 

C. COMPUTATION OF STATE TRANSITION MATRICES 

Calculating @(t, t ) i s  straightforward, since from Eq. 13, 0 - 

where k is an integer between 1 and Mn. Thus the - H. matrix a t  

each step is just 2 at the previous step multiplied by the mat r ix  ex- 

ponential 

HbW,  
@(t t kbn t bn,  - n  t k6,) = e 

which needs to be calculated only once for each interval [ t  t n’ n t l  
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This may be done conveniently with the defining se r i e s ,  

Since 6 will generally be quite small, this se r ies  will converge 

rapidly, the number of te rms  to be kept depending on the desired a c -  

curacy of z ( t ,  to). However, the e r r o r  bound on [ eE6] is related 

in a complicated way* to the e r r o r  bound on egp so the se r i e s  will 

be terminated when the t e rms  become smaller than a certain to le r -  

ance (TOLZ), which is left a s  a program variable. 

k 

D. COMPUTATION OF y ( t )  

Two forms a r e  available for _V(t) : Eqs. 10 and 11. The la t te r  

i s  a differential equation which could be integrated (backwards in time) 

by any of the usual methods. However, the piecewise l inearity of the 

system leads t o  a more  convenient method using Eq. 10: 

where t = t tkd,, 1 5  k 5 Mn. 
of transition matr ices ,  

Using the familiar semigroup property n 

thi s be come s 

* 
See Appendix A. 
thumb is that the e r r o r  in A' is k t imes the e r r o r  in A. 

One conve ient (but potentially inaccurate) rule of 
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Since t t 6n 5 t 5 itl, this becomes n 

The first t e r m  mayJpe,computed from V(t) 

and the quantity e 
above. The second term i s  invariant for all t in the interval [ 

with two multiplications, 

v d l  dreadg have been calculated in par t  2 
t'\"/ un - 

t 6n, 

] ,  and may be computed with a ser ies ,  using Eq. 23:  i t 1  

= C 6  + [ H ' C t  C H 1 z - t  62 [E' 2 _C+2H'CH+ CH 2 377 ti3 + . . . (28) - - -- - - -  -- 
This is an easy  series to compute, since each term (denoted 

follows f rom the previous one: 

T.) 
-J 
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The series will be terminated when the t e r m s  become smaller  than 

TOL2, just a s  in  par t  C above. 

A 
E.  COMPUTATION OF &(n) 

Once _V(t) and ?(t, to) have been calculated and stored for each 

s tep in the interval [tn,tntl] , any of the common quadrature methods 

may be used to evaluate the integrais _- in . Eq. 18. 

used here was devised by Romberg, and is essentially a Richardson- 

type 1 -  .extrapolation of the trapezoidal rule.* It i s  felt that this pro-  

cedure is worth the extra  program complexity because it provides 

substantial e r r o r  reduction at  very little cost in t e r m s  of running t ime. 

Since this decreases  Mn, the number of steps required to  give IJn) 

a certain e r r o r  tolerance,  the computation time and storage require-  

ments for _V(t) and Z(t, to) can be significantly reduced. 

for this method) may be formulated. Unfortunately, the e r r o r  t e r m  

for Romberg integration contains a high-order derivative of the inte - 
grand, whose computaeion is both impractical and inaccurate. How- 

eve r ,  the e r r o r  formula for the trapezoidal rule on Mn subintervals, 

f rom which this method is derived, contains only a second derivative:** 

The scheme to be 

A 

At this point a rule for  choosing Mn (which must be a power of 2 

where - E(n) i s  the e r r o r ,  J(t) is the integrand, and the inequality 

and absolute values a r e  to  be interpreted element by element. 

the actual Romberg e r r o r  i s  directly related to  

chosen to make this e r r o r  l e s s  than TOL1, a program variable.  The 

Romberg scheme provides an a posteriori  e r r o r  es t imate ,  and TOLl 

may be adjusted on successive runs until an appropriate value evolves. 

Since 

I_E(n) I, Mn will be 

* 
** 

F o r  details see Ralston,-Ref. 4, pp. 121-124. 

Ibid, pp. 116-117. 
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Since the integrand is not actually known when the step size is  

chosen, _E(n) can only be an estimate of the e r r o r ,  rather than a 

bound on it.  Hence, it is convenient to replace Eq. 30 by 

" 
where L(n) approximates the second derivative of the integrand on 

[ tn* tn t l  ] and 11 - 11 i s  the norm defined by 
n 

i, j=1 

Differentiating the first integrand in Eq. 18 twice yields 

- [ _a+  ,L 

A 
where - F(t)  = - 9 ( t ,  to)@ - 
he approximated by 

where - 9 and - V a r e  taken from the previous iteration. 

Thus the number of steps fo r  the n-th time interval, Mn, will be 

taken as the smallest  power of 2 such that 

where 

variable.  

lE(n) 11 i s  given by Eq. 34 and TOLl is an adjustable program 

It i s  c lear  f rom the above discussion that Eq. 35 i s  at  best a 

"ball -parkt '  estimate,  but a more  accurate determination of the step 
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s izes  would require a substantial increase in program complexity. 

problems were encountered with this scheme when the program was 

tes ted.  

No 

F. FINAL STEPS 
A i  With - L ( n ) ,  n=O, 1, . . .N-1  calculated, the new feedback mat r ices  

i t1  - L (n) may  be computed from Eq. 17, but f i r s t  i t  i s  necessary t o  

check whether the cost has increased. If 

trVi(tO) - > (TOL4) . trXi-'(to) 

i -1 then - d ( n )  is replaced by & 
the previous iteration i s  repeated (TOL4 i s  a program variable slightly 

l a r g e r  than 1).J6 

(n), n=O, 1,  . . .N-1, E i s  halved, and 

"i Otherwise the &(n)  a r e  checked for  convergence, one entry at a 

t ime.  If 

1 (4 
1-(TOL3) < l t (TOL3) for  all j , k , n  - ljk(n) - (3 7) 

where 1. .(n) a r e  the elements of L. .(n), then the iterations a r e  t e r m i -  

nated (TOL3 i s  another program variable to be supplied at  run t ime) .  

If Eq. 37 i s  not satisfied then Eq. 17 is used t o  get L (n), 

n=O, 1,  . . . N-1, and the iterations continue. 

'J -'J 

it1 

* i In several test  runs it was found that trV (t ) converged before 

- L ( n ) ,  and inequality 36 appeared to  be t rue ,  due to  roundoff noise. 
Thus TOL4 was added to  avoid unnecessary repetitions. 

0 - 
i 



N. NUMERICAL RESULTS 

The algorithm a s  outlined above has  been programmed in PL/I 
language and run on the IBM System/36O computer at the M. I. T. 

Computation Center. 

given in Appendix B. 

A more  detailed description of the program i s  

The program was tes ted with the two numerical examples of 
Meinman, a double integrator plant with N =  1 and N = 2 .  His r e -  

sults were duplicated to within roundoff e r r o r s  and the reader  is 

re fer red  to his thesis  (Ref. 1 ,  pp. 1 1 1 - 1 1 8 )  fo r  a discussion of them. 

The program was then used to  generate suboptimal feedback mat r ices  

for the following output regulator problem involving a third order  

plant: 

Sys tern dynamics : 

y(t) = S ' X ( t )  

T rans fe r function : 

= [ 1 - 1  03 - x ( t )  (53) 

-1 10 
2 H(s)  = ~'(SJ - ,A) = 

( s t l ) ( s  t 4 )  

Impulse response: 

-t h(t) = L c ' e A t b  - = 2e -2cos2t  t sin2 t 

(54) 

(55) 

Cost functional for the optimal linear regulator problem: 

- 15- 
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i.e. , 9 = cc' = 

1 -1 0 

-1 1 0 

0 0 0  

Cost functional for  the suboptimal l inear regulator problem: 

The optimal control for this problem is 

where the optimal feedback matrix is obtained by solving the matr ix  

Riccati equation (see Eqs.  3-4). g(t) was computed using a program 

developed by A.  Levis ,  l 1  and its components a r e  shown as broken 

l ines in F igs .  2-5. The steady-state (T  - ab ) values a r e  indicated 

by arrows.  

The suboptimal (piecewise constant) feedback matr ix  
A 0  - Lo(t) = [l,(t) 

intervals. 

costs  for these various cases  are given below, together with the 

optimal cost and the cost  incurred by using the steady state gain 

l;(t) li(t)] was computed for 1, 2 ,  4, and 16 sub- 

These solutions a r e  shown in Figs. 2 ,  3 ,  4 ,  and 5. The 

a. Optimal solution: - L(t) = - M t ) ,  O <  t - < 2 

- - 1 
1 

.4044 -.3620 -.3520 

K(0) = -.3620 .5600 .2425 , p(M) = tr Ic(0) = 1.6097 

-.3520 .2425 .6454 

- - 

- 
-4101 -.3771 -.3512 

[ - 

b.  Steady-state solution: L(t) = Ls = ?(-ab), O <  t 5 2 

-.3771 .6029 .2314 , p(Ls) = tr _Vs(0) = 1.6969 
-.3512 .2314 .6839 
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c .  One subinterval: - L(t) = - Lo(o), 0 < t < - 2 ( F i g .  2) 

- 1 
1 
I 
1 

.4090 -.3729 -.3504 

_Vo(0) = -.3729 .6001 ,2297 , p(Lo) = tr Vo(0) = 1.6735 
-.3504 ,2297 .6643 

- - 

i=O,1 ,2 ,3  (Fig.  4)  - 2  

.4067 -.3608 -.3505 

[ 
[ 
i 
[ 

d.  Two subintervals: L(t)=h0(i), i < t < i +  1 , i  = 0,  1 (Fig.  3 )  

_Vo(0) = -. 3608 .5620 .2415 , p(Lo) = t r  _Vo(0) = 1.6193 

o i  

-.3505 .2415 .6505 

- 

-0 - 

i + l  . 
u 

,4054 -.3613 -.3513 

e .  Four  subintervals: L(t) = &(i),T < t<  - 

V (0) = -.3613 .5613 .2417 , p(L0) = tr V (0) = 1.6157 

-.3513 ,2417 .6490 

n i  

- 8 -  
f .  Sixteen subintervals: &(t) =L-(i), - < t <  

.4045 -.3620 -.3520 

-0 

, i = O ,  I,.. . I 5  ( F i g .  5 )  

_Vo(0) = -.3620 .5699 . 2424 , p(L0) = tr _Vo(0) = 1,6104 

-.3520 .2424 .6459 

Comparing (b) and (c) above, one finds that the best  constant 

matrix nn ( O i  TI 

state solution on this interval, although both cases  a r e  within five 

percent of the optimum cost.  Using two subintervals in (d) brings the 

cost  t o  within one percent of the optimum, and fur ther  divisions in  (e) 

and (f) improve upon this only slightly. 

provides a slight improvement over using the steady- 

One might expect the suboptimal piecewise constant gains to  be 

fa i r ly  close to  the "average" values of the optimal gains, but it is  

interesting to note in Figs .  3 and4 that this  i s  not the case.  

Fig.  5 the constant gains begin t o  converge t o  the optimal solution, 

as predicted by Theorem 11 of Ref. 1 .  

In 
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Fig. 4 Feedback Gain Matrix for Four Subintervals 
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Fig. 5 Feedback Gain Matrix for Sixteen Subintervals 
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V .  CONCLUSIONS 

A computer program has been presented which iteratively finds 

t h e  (sub)optimal feedback gains fo r  a l inear regulator system under 

the constraint that they be piecewise constant. Implementation i s  

greatly simplified by such a constraint, and results obtained for a 

third-order example indicate that near  -optimal performance may be 

achieved with piecewise -constant gains in the feedback loop. 

- 2 2  - 



APPENDX A 

ERROR BOUNDS 

In Section I11 C the matr ix  exponential e- Hk6 is computed by 

raising eg6 to  the k-th power. This ra i ses  the question of how much 

e r r o r  is allowable in e- ( i . e . ,  how many t e r m s  in the se r i e s  should H6 

be kept) in order  to maintain a given tolerance on ['e- H61 k 

The basic problem is as follows: Suppose x is the true value of - 
a matrix and the apparent value is 

- A =  X t E  - -  

where E is an e r r o r  matr ix .  Then if - 

An = (X + E)n = Xn t E -n - -  - - 

what i s  a bound on the e r r o r  E ? This p ~ c k l e z - ,  acd the closely r e -  

lated one of bounding the e r r o r  in 
-n 

At  (x t - E)t  e- = e -  

arise in a variety of s i t ~ a t i o n s . ~  Expanding Eq.  A . 2  t e r m  by t e r m  

yields 

(A. 3) A n = A n t ( A  -n -1 E t T - 2 E A t  . . .  +_EA -n -1 ) + . . . + E n  -- - - - - -  

which is difficult to evaluate, since ,A and ,E do not commute in 

general .  One way to  avoid this difficulty is to use a norm on E which -n 
obeys the Schwarz inequality, i .  e . ,  

Then'from Eq. A .  3 

However, this bound i s  not very useful in the present situation, since 

l l ~ l l n - l  diverges for  la rge  n whenever ll_All > 1,  even though 

llA.11 -. 0 (assuming a stable system). 

-23-  
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n The problem of bounding ,A was investigated at length, but no 

easy solution was found. 

but is not used in the program due to i ts  complexity. 

One scheme is outlined below for reference,  

* 
Let _A be a matr ix  with distinct eigenvalues 

-N 

5,  X2,. . . , XN and 

be a reciprocal bas i s ,  eigenvectors I+, u2,  . . ,gN; 
i. e . ,  

let  1 1, v2, . . . v  

(A. 6) 

Then the spectral  representation of - A is (Ref. 6,  p. 314) 

N N 

- A = 1 X.E. 1-1 4 c X i u . v '  -1-i 
~ 

i= 1 i= 1 

and it is c lear  from multiplying Eq. A . 7  by itself that 

N 

i= 1 

If the eigenvalues are available, ** then the ma t r i ces  -Ei m a y  be 

found quite easily using a result  of M ~ r g a n . ~  Suppose the t ransfer  

function (of the system 8 = 45) i s  

. . . t % i s  the character is t ic  N N-1 where d(s) = det ( S I - _ A )  = s t d  s 

is a matrix poly- N -1 ' N-2 polynomial and E( s) = _Bas t El s * * ' 'zN-1 
nomial often called the adjoint matrix. Then the - Ei a r e  given by 

* 
This is a reasonable assumption because the matrix entr ies  must  
be approximated by a finite number of digits in computer storage and 
an  arbitrari ly small  perturbation of the i r  values will separate any 
multiple eigenvalues . 
They may be found, for  instance, by solving for the roots of the 
characterist ic polynomial d(s) ,  which is available f rom the r e -  
cursion formula Eq. A. 11. 

+k 
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- mi) 
gi = u . v '  -- i=1 ,2 , .  . .N (A.  10) -1-i - t r _ B ( X i ) '  

The coefficients of EJs) may be generated with a well-known algo- 

r i thm given in Zadeh and Desoer: 6 

4, = -(l/k)tr(E&A) k = l ,  2 ,  . . . N  (A.  11) 

With the - Ei and Xi available, Eq. A. 8 suggests an easy  way to 

bound - An: 

(A .  12) 

where the inequalities and absolute values a r e  to be interpreted entry 

by entry.  Assuming the matr ix  An to be stable ( i . e . ,  / A i  I < 1 for all 

i ) ,  this bound does not diverge for large n.  
At gives a bound for e- : 

- 
An analogous procedure 

(Rex. )t !ReAi! t N 

I E ~  I < N e m a  /E. j ( A .  13) -1 
1 

leAtl (c e - -  
max i = l  

Here  the bound goes to  zero for large t if  eAt is stable ( i . e . ,  

ReXi< 0 for  all i ) .  

The above method for bounding An is straightforward but tedious 

to  program, and no simpler scheme was found. F o r  this reason, it 

was not used in the program. 



APPENDIX B 

USE O F  THE PROGRAM 

1 .  INPUT VARIABLES 

Quantities which must  be assigned values as input a r e  a s  ,J 

MSYS = dimension of system state vector 5 

NSYS = dimension of system input vector 

NTIMES = N, the number of intervals into which the 
time axis [ 0,  T] i s  divided 

TIMES : a r r a y  containing to,  t l ,  . . . tN 
E PS = E. See Eq. 17 

TOL1, TOL2, TOL3, TOL4 : e r r o r  tolerances.  

OUTPARM indicates mat r ices  to be printed out 

See Sections I11 C - F  

lows : 

= 0 : none 

= 1 : H(n), HPHI(n) 

= 2 : H(n), HPHI(n), HEXP(n) 

= 3 : H(n), HPHI(n), HEXP(n), HINT(n) 

= 4 : H(n), HPHI(n), HEXP(n), HINT(n), 
on the first iteration only 

ITERMAX : maximum number of iterations 

A ,  B, F, Q, : a r rays  containing mat r ices  of the same names 

L : a r r a y  containing L(n),  - n=O, 1 , .  . .N-1. Initial values 

V K E E P  : a r r a y  providing temporary  storage for V(t). 

mus t  be supplied 

Initial value (for reference) is  Riccati so- 
lution at  t ime t 0 '  

Values for these variables a r e  supplied on input cards .  The fo r -  

mat i s  i l lustrated by an  example. 

0 1  

- A = [ 2  j E =  

to = 0 .1 ,  t - 0 . 2 ,  t2 = T = 0 . 3  1 -  

1 1 
L (0) = [ - 1  -21,  ,L (1) = [ - 3  -43 - 
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O = [ :  I:] Solution of Riccati equation at t 

The input cards  a r e  then a s  follows: 

NSYS = 2,  MSYS = 1, NTIMES = 2; 
EPS = 1, TOLl = 0.01, TOL 2 = 0.0001, TOL3 = 0.01, 

TOL4 = 1.01, OUTPARM = 4, ITERMAX = 25; 
0.1, 0.2, 0.3, 

0, 1,  2,  3 ,  
4, 5, 

6 ,  7, 8 ,  9, 
10, 11, 12, 13, 

-1, -2, 

-3, -4, 

-5. - 6 ,  -7, -8, 

2. OTHER VARIABLES 
A 

LHAT : a r r a y  containing &(n) 

H: a r r a y  containing _H(n) = ,A - ,B&(n) 

HPHI : a r r a y  containing i4(t 

HEXP : a r ray  containing e 

n* '0) 
- H(n) fjn 

%l 

HINT: a r r a y  containing [ Qt&(n)'&(n)] e-H(n)Tdr 
0 

S T E P 0  : a r ray  containing log M 2 n  
STEP1 : a r ray  containing Mn = number of steps in  n-th 

interval 

STEP2 : a r ray  containing 6n = (tntl -t )/Mn 

(all for n = O,l, . . . N-1) 

3 .  MAIN PROGRAM : SUBOPT 

This reads in all the inputs, including the initial values for &(n) 

(Box 1 in Fig.  l ) ,  and then calls COMPSTP. 

once for  each interval, n = N-1, N-2, . . . 1,O. Finally, it updates 

Next i t  calls INTEG 
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- L(n) , checks for convergence, and repeats the iteration with smaller  

6 or  goes on to  the next iteration (Boxes 7-11 in Fig.  1).  

4 .  SUBROUTINES COMPSTP AND INTEG 

COMPSTP (Boxes 2-3  in Fig.  1) calculates the s tep s izes  for each 
6- 
11 

, and [ j  eE(n) 'T 
H(n) 6n 

interval and the matr ices  g ( t n ,  to),  e- 

0 

for n=O, 1 , 2 ,  . . .N-1. 
INTEG.(Boxes 4-5) computes !@(t,tO) and x(t) at each of the 

Mn steps on the n-th interval [ tn, tn+l] . AThen it  performs the two 

integrations in Eq. 18 and returns a new IJn). 

5 .  SUBROUTINES MATMULT AND MINV 

MATMULT has several  entry points, which a r e  just a collection 

of matrix manipulation and output routines. 

routine is self -explanatory, 

The listing of this sub- 

MINV is a matrix inversion routine which has been translated 

into PL/1 from the IBM system/3 60 Scientific Subroutine Package. 

6 .  LISTINGS 

On the following pages a r e  listings of the various par t s  of the 

program. 



SUBQPT: PROCEDURE OPT1 O N S ( M A 1 N ) ;  
D E C L A R E  (NSYSwMSYSsNT IMES ! F I X E D ;  
BIGCOOP:  GET D A T A I N S Y S r M S Y S r N T I M E S ) ;  

P U T  P A G E  E D I T (  
* B E G 1  N PROCEDURE TO CALCULATE S U B O P T I M A L  G A I  N M A T R I C E S '  t ( X I 2 3 ) r A ) ;  

P U T  S K I P ( 2 )  D A T A (  N S Y S r M S Y S r  N T I M E S I ;  
B E G I N ;  D E L L  ARE E P S I T O L ~ ~ T O L ~ I T O L ~ ~ T O L ~ ~ T E M P * T E M P A ~ T E M P B ~  

( I T E R *  I T E R X r  I T E R Y r  I T E R C N T r  ITERMAX rOUTPARbl, 
I ~ J * K ~ M ~ N ) F I X E O I  T I M E S ( 0 : Y T I M E S )  9 

( I D E N T r A  r F t Q r V K E E P r C r D 1  ( N S Y S r ' J S Y S ) F L O A T r  
B I N S Y S r M S Y S ) r  B P l M S Y S  rNSYS 1 '  
l L r L H A T  ) 4 MSY S I  N S Y Sr 0 :  N TIMES-  1 r 3 : 1 I F  L O A 1  I 

( P r H P H I r H E X P r H I N T )  (NSYS,NSYS*O:NTIMES- l )  I 

( STEPOr  STEP 1 ) (0: N T  IMES- 1 I F  I X E 3  r 
V T R A C E ( 0 : i )  r NORM R E T U R N S ( F L 3 A T )  ; 

STE P 2 (  0: N T I N E S - 1  1 r 

GET 
P U T 

D A T A  ( E P S  
SK I P  ( 2 1 

T OLlq T OLZ * TOC3 * TOLQ *OUT PARM r I T  E R MAX 1 ; 
D A T A I E PS r T OL 1 * T OL 2 t TOL 3 r TO L4  r 3 U T  P A 3 M r I T E R MAX 1 ; 

G E T  L I S T ( T 1 M E S ) ;  P U T  S K I P (  2) D A T A I T I M E S )  ; 
GET L I S T t A ) ;  C A L L  M X W T ( A * ' A  M A T R I X ' ) ;  
G E T  L I S T I B ) ;  C A L L  M X O U T t B r ' B  M A T R I X ' )  i 
GET L I S T ( F J ;  C A L L  M X O U T ( F 1 ' F  M A T R I X ' ) ;  
G E T  L I S T l O ) ;  C A L L  M X O U T ( Q r ' 0  M A T R I X ' ) ;  
IDENT=O; DO 1=1 T U  NSYS; I D t N T ( I r I ) = l i  END; H P H I ( * * * r O ) = I D E N T ;  
I T E R -  I T E R X r  I TERCNT= 1; I T  ERY =O; C A L L  TRANSPS I B r  BP) ; / *  I N I T I A L I Z A T I O N  OF L Y A T R I C E S * /  
DO I = O  TO ( N T I M E S - 1 ) ;  GET L I S T ( L ( * r * r I r l ) ) ;  E'JD; 
G E T  L I S T : V K E E P ! :  
r u i  S n i P i 3 i ;  GALL ~ X B U T ! " f i E E P - * R I C C A T I  S O L U T I O N  AT T I M t  O ' i ;  
TEMP=O; DO I=1  TO VSYS; T E M P = T E M P + V K E E P I I r I ) i  END; 
P U T  SK IP( 2 1 E D I T (  'TRACE OF R I C C A T I  S D L U T I O N  = ' * T E M P )  ( A i € [  169 5r  6 )  1 ; 
C A L L  M X S ( L  I * r * r * r L )  r N T I M E S r  ' I N I T I A L  F E E U B A C k  Y A T R I C E S  ( L ) '  1;  

LOOP: PUT PAGE E D I T ( ' *  * * I T E R A T I O N  NUMBER * r I T E R C N T r  
* * * * ' ) ( X ( 3 0 I r A * F [ 3 ) * A ) ;  

If I T E R  -.= I T E R C N T  THEM P U T  S K I P  L I S T I ' I T E R  = ' * I T E R ) ;  
I F  I T E R > l  & OUTPARM>3 T H E N  OUTPARM=O; 

/ *  COMPUTE H = A - B*L */ 
DO I = O  T O  ( M I M E S - 1 ) ;  
 ALL M A i M U i i i G r L : * . * , ! i ! T E R x ! ,  C l :  
l i t * * * .  I )=A-C;  END; 
I F  OUTPARM>O r H E N  
C A L L  M X S l  H r N T I M E S I ' C L O S E D - L O O P  SYSTEM YATR I C E S  I H) ' 1 ; 

CA L L  C O M P S T P ( V K E E P r  I TERr  Hr H P H I  r H E X P r H I N T 9  LI 4 r  T I  MESS OUTDAi IYs  
T O t l v  T UL2 r S T E P 0  e STEP 1 r S T  EP 2 I ; 

VK EEP=F; 
PUT S K I P ( 3 1  L I S T I '  I NT ERVA L ROMBERG I N T E G R A T I O N  E R 3 3 R S  J ;  
DO J= { N T I M E S - 1 )  T O  0 BY -1; 

C A L L  I NT EG ( J  9 STEP 0 ST  EP 1 r V  KEE P r B P r ti PH I i I N TI HE XP 9 

T I M E  S I L H A T r  I T E R  r F L U S H  ; G O  T O  NOFLUSH; 
FLUSH:  L H A T ( * . + r J . I T E R X ) = L ( * r ~ r J , I T E K X ~ ;  NOFLUSH: END; 

C A L L  M X O U T ( V K E E P * ' M A T K I X  V ( T = O ) ' )  i 
V T R A C E I  I T E R X  )=O:DO I = l  T O  NSYS; 

VTRACEI  I T E R X ) = V T R A C E ( I T E R X l  + V K E E P ( I r I  J ;  E 'JUI  
P U T  S K I P I  2 )  L I S T ( ' T R A C E 1 V I  = ' r V T R A C E (  I T E i X  1; 
1F E P S - t l  THEN P U T  S K I P  L I S T (  ' E P S I L O N  = *  r E P S )  ; 

I F  I T E R  =1  T H E N  GO T O  HERE; 
I F  V T R A C E l  I T E K X ) > T O L 4 * V T R A C E (  I T E R Y  I T H E N  DO; 

I T E R =  IT ER-1; i T E R Y =  I TE RX; I TERX=YO D I I TER 9 2 1 i EPS=EPS/  2 ;  
P U T  S K I P I Z )  E D I T ( ' T H I S  I T E R A T I O N  WILL REPEAT W l T H  E P S = E P S / Z * l  

( X ( 2 0 1 r A ) ;  
GO T O  THERE; END; 
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HERE: D O  J = O  TO ( N T I M E S - 1 1 ;  DO M = l  T O  MSYS; D O  N = l  T O  N S Y S i  
T E M P A = L ( M r N r J r I T E R X ) ;  T E M P B = L H A T ( M ~ N * J T I T E R X ) ;  
I F  T E M P A r O  I TEMP8=0 T H E N  I F  ABS(TEMPA+TEYPB)  > n L 3  

I f  ABSIITEMPB/lEMPA)-lJ>TOL3 THEY GD TO THERE;  
W I T :  END; END; END; PUT S K I  P ( 8 )  ; 

THE PROCEDURE HAS CONVERGED T O  THE F O L L 3  W I Y G  MATR I C E S (  L )  ' 1  : 

THEN GO T O  THERE;€LSE GO TO Q U I T ;  

C A L L  MXS( L HAT ( *,*,*, f TERXJ r N T I M E S r  

PUT S K I P I 8 ) ;  GO TO BIGLOOP;  

THERE: I F  E P S = L  THEN D O  J=O T O  ( N r r Y E s - 1 ) ;  
L (  * r  * r  J r I T E R Y  ) = L H A T ( * r * r  J T I TERX)  ; END: 

E L S E  DO J=O T O  I N T I M E S - 1 1 ;  
L(*c, * T J I TERY J =  ( 1- EPS) N( * * * I  JT  I TERX)  + E P S * L H A T  ( * r  * r  JT I 1ERX 1 ; 
END; 

C A L L  M X S ( L (  * , * r * r I T E R Y ) r h l T I # E S r ' N E W  FEEDBACK M A T R I C E S I L ) ' ) ;  
I F  I t E R C N T > = I T E R M A X  THEN DO; 

P U T  S K I P ( 6 )  E D I T ( ' P R 0 C E D U R E  T E R Y I V A T E D  AT ' r I T E R t M r  
' I  r E R A T I O Y  SI * )  ( A r F (  3 T A  ) ;  

I F  E P S < 1  T H E N  C A L L  M X S ( L H A T ( * r * * * r  1 T E R X ) r N T I  MEST 
' L H A T  M A T R I C E S  I N  F I N A L  I T E R A T I O N  r l E R E ' ) ;  

PUT S K I P ( 8 ) :  GO TO B IGLOOP; END; 

G O  T O  LOOP; 
I T E R =  ITER + 1: I T E R C  N T = I  TE R C N T + l :  I TERY= I TEi3X ; I T E R X  =MOD ( I T E  R i  2 I i 

EN 0; / * F I R S T  B E G I N  STATEMENT*/  
E N D  SUBOPT; 

COMPSTP : PROCEDURE( V KEE PI I T E  RT H r H P H I  r HEXP T H I N T S  l r  Q T T  I MES T O J T P A R  MI 
T O L ~ I T O L ~ ~ S T E P O T S T E P ~ T S ~ ~ P ~ )  ; 

DECLARE (NT  IMESI I T E R r N S Y S r M S Y S  I O U T P A R H I F I  XED, 
t S T E  POT S T E P 1  ) (* 1 f I X ED. 
{ H ~ H P H ~ ~ H E X P I H I  N T )  ( * r * r  * ) r  

T O L l r  TOLZT T I M E S (  *I T 

S T E P 2 1 *  1 9 ( V KEE P I  0) ( * T  * ) r 
L ( * , * e  * r  * ) F L O A T  

NORM RETURNS( F L O A T ) ;  
/*COMPUTES S T E P  S I Z E S *  C A L L S  COMPEXPI C J H P I V T r  

AND COMPUTES P H I  A T  ENDS OF I N T E R V A L S * /  
N S Y  S= D I M  IL  T 2 ) Z MSY S = D I  M( L 1 1 i NT I ME S=HBOUND ( T I  NES 9 1 J ; 
B E G 1  N; 
DECLARE t F D O T ~ M A X T N O R M V ~  N C R M H * N O R M P H I ) F L D A T * L P [ N S Y S r H S Y S ) F t O A T r  

L H O L D ( M S Y S r N S Y S )  F L O A T r  ( C T D  ) ( N S Y S v N S Y S )  T 

( I  J T K T  I T E R  X)F I  XED; 
NORHV=NORMIVKEEP):  IF NGRMV<l THEV N D R M V = l ;  
I T ER X=MOD ( I TER T 2 

NORMH=NORM(H(*,*rJ)) ;  NORMPHI=NORM(HPHI(*r*vJ) 1 ;  
LHL)LD=L( * r + r  J I I T E R X ) ;  
C A L L  T R A N S P S ~ L H O L D T L P ) ;  
C A L L  MATMULTt  1 P r  LHOLDIC) i 
c=c+ 0; 
F M T=4*NOR MH*NOHHPH f **2* ( NORMH*NORMV+NORM( C 1 ) ; 
HAX=SQRT (FOOT*(  T I M E S (  J + l ) - T  I M E S (  J )  ) * * 3 / 1 1 2 * T O L l ) )  ; 
I F  MAX >=5 12 T H E N  DO; 1=512;  K=9 i 

; 
DO J=O TO ( N T I M E S - 1 ) ;  

PUT S K I P ( 2 )  E D I T ( ' I N D 1 C A T E D  NUMBER OF S T E P S  FOR I N T E R V A L  ' ~ J T '  1s ' 
(MAX1 'a 512 STEPS WERE USED.* ) ( A T F (  3 ) r A r F ( 6 ) r A ) i  
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GO TO HERE; END; 
1 = 1 6 ;  K = 4 :  
W W H I L E  ( I C M A X ) ;  I = I * 2 ;  K = K + l ;  END; 

C A L L  COMP I N T  ; 
C A L L  COMPEXP; 
IF J < I N l I M E S - l l  T H E N  DO; 

W W H I L E  ( K < I ) ;  K= Z*K ; 

HERE: S T E P O ( J ) = % ;  S T E P l ( J ) = I ;  S T E P Z t  J ) = ( T I M E S ( J + l ) - T I M E S (  J ) ) /  I ;  

K=L;  C=HEXP ( * r * r J ) ;  

C A L L  WATMUL T l C r  C. 0) i C=D; END ; 
C A L L  M A T M U L T ( C r H P H I ( * r * r J t r H P H I ( * r * r J + l ) ) ;  
END: /* I F  STATEMENT */ 
PUT S K I P ( 3 )  L I S T ( '  I N T E R V A L  S J B I  NTERV ALS INCREMENT ' t i  
DO J=O TO ( N T I M E S - 1 )  ; 

END: / *  E N 0  OF D O  LOOP * /  

PUT S K I P  E D I T I J r S T E P l l  J )  r S T E P 2 l  J 1 ) ( X (  6 ) r F  { 3 1  e Xi121  r F ( 4 )  r 
X (  1 0 ) r E ( 1 2 * 5 r b ) ) ;  E V O i  

I F  OUTPARM>O T H E N  C A L L  M X S ( H P H I ~ N T I M E S I ' H P H I  M A T R I C E S ' ) ;  
I F  OUTPARM>l THEN C A L L  M X S I  H E X P ' N T I  MESI ' H E X P  Y A T R I C E S ' )  ; 
IF OUTPARM>Z T H E N  C A L L  M X S I H I N J r N T I M E S r ' H I N T  M A T R I C E S '  ) i 
RFTURN: 

COMP I N T  : PROCEDURE; /*COMPUTES H I N T  ON I N T E R V A L  J*/ 
OEC L A RE {SUM r T  ERM ~ H N ~ H P I T E  H P l r  TEMP2)  (NSYSv '4  SY SI r ( K IM r Y  ) F  I X E  1; 

T E R W  C * S T E P 2  t J )  ; SUM =T E RM ; 
W=H(  * , * r J ) * S T E P Z ( J )  ; C A L L  T R I V J S P S I H N r H P ) ;  
D O  X=? y n  N E V S ;  
CALL fl,A:H!.!LT! H P ; T E R I ; T E M P I !  Chl  I MATMULTI  T E R M ~ H N I T E M P Z )  ; 
T E  RM= 4 TEM P1 +TEMP2 I /K ; SUMrSUM + r E  R M ; END; 

COOP: K = K + l ;  
C A L L  MATMUL T t HP 7 TERM9 T EMP 11 ; C A  L L  MAT MUL T ( T ERMI HN 9 T EHPZ 1 ; 
TERM-I TEMP l + T E M P Z I / K ;  
0 3  M=l TO NSYS; DO N = l  TO NSYS; 

SUM= SUM+ TERM; 

I F  SUM{M.N)=O T H E N  I F  A B S ( T E R H ( M I N ) I > T O L Z  THEN GO 10 LOOP; 
ELSE GO TO Q U I T ;  

I F  A B S ( T E R H ( M * N ) / S U M I M r N I  ) > T O L 2  THEN GO TO LOOP; 
QUIT:  E N D i  END: 
:: :::: : a ,  a ,  J ! -rs !j M ; 

/ *C O H P I  NT* / END; 

COMPEXP: PROCEDURE; /*COMPUTES E TO THE H ( J J T  FOR I N T E R V A L  J * /  
D E C L A R E  ( K r H r N I F I X E D I ( H T  r S U M r T E R M r T E M P )  ( N S Y S q N S Y S ) ;  
S U M r T E R M = H P H I (  * r * r O )  ; /* = I O E V T I T Y  M A T X I X * /  

DO K = l  T O  NSYS; 
H T=H I * * r  J 1 *STEP 2 ( J i 

C A L L  M A T M U L T ( H f r 1 E R H r T E M P  1;  
TERM=TEMP/K;  SUM=SUM+TERM; END ; 

LOOP: K = K + l ;  CALL MATMULT i  H T r T E R M r T E M P )  i 
J ER M=T EMP/ K ; 
D O  M=l T O  NSYS; UO N = l  T O  NSYS; 

SU M= SUM+ T E fU4 ; 

I f  SUM(WVNI=O T H E N  I F  A B S ( T E R M ( M r N ) ) > T O L Z  THEN G O  T O  LOOP; 
E L S E  GO T O  Q U I T ;  

IF A B S I T E R M [ M r N ) / S U M [ M r N )  ) > T O L 2  THEN GO TO LOOP; 
QUIT:  END; E N D i  

EN 0; 
HEXP I * r * r J 1 =SU M : 

/*co NPE x P* / 

/*C OMPST P* / 
END; / + F I R S T  B E G I N * /  

EN 0; 
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I N T F G :  PROCEDURE( J.STEPO9 S T E P l r V K E E P *  BP~HPHI IH INTTHEXPI  
T IMES TLHAT I T E R 9  F L U S H )  i 

DEC LA RE ( J  r NS Y S I  M SY S I T  ER *MM 1 F I XED r ( STE POI STE P 1 )  (*) F I XED* T IME S(  * 1 * 
V K E E P ( * r * ) r  B P ( * r * ) *  ( H I N T r H P H I * H E X P ) ( * r * r l ) r  
L H A T t  * * * * * * * ) F L O A T *  F L U S H  L A B E L ,  NORM R E T U R N S ( F L O A T 1  i 

/ *  DOES A L L  COMPUTATIONS AND I N T E G R A T I O N S  13 GET CHAT 
ON I N T E R V A L  J */ 

MM=STEPl (  J) i  N S Y S = D I M ( L H A T * Z I  ; M S Y S = O I M ( L H A T r  1); 
B E G I N ;  DECLARE (PHIIV)(NSYS~NSYS*O:MM)r DETI I F I X E D *  

( C t  09 E I I N S Y S r N S Y S l  t L H O L D l  MSY S rNSYS I F L O A T ;  

/ 4  COMPUTE P H I  O Y  I N T E R V A L  J */ 
P H I (  * r * * O ) =  H P H I  ( * * * r J ) i  C= HEXP( * r * r  Jl ;  
DO I = l  TO MM; C A L L  M A T M U L T ( C * P H I  ( * r * r I - l ) r P H I ( * r * r I ) ) ;  END; 

/ *  COMPUTE V ON I N T E R V A L  J */ 
V (  * e *  MM =V KEEP : 
DO I = ( M H - l l  TO 0 BY -1; 

CALL 
V ( * * * r  I ) = H I N T ( * r * *  J I ; 
C A L L  M U L T A D D ( D * C * V ( * r * r  I )  1 ;  END; 

CALL  TR AN SP S (  HEXP ( * r  * r J ) rE 1 ; 

MATMULT l  E * V I * * * r  I + L )  s D) ; 

VKEEP = V l * * * r O l i  

/ *  ROMBERG I N T E G R A T I O N  OF THE I N T E G R A L S  C AND 0 */ 
B E G I N :  

D E C L A R E ( K v M * N I F I X E D *  Z* ( T E M P r S A V E T r S A V E S ) ( N S Y S v N S Y S l  t 
( S  9 1  I t  O:STEPO(J 1 9  N S Y S r N S Y S l  ; 

M = S T E P O ( J l  i Z= ( T  I M  ES( J +  1 1 - 1  IMES( J I I 1 2 ;  
CALL TRANSPRl  P H I  ( * e * ,  O)r T E M P I  i T I  0 s  *,*)=TEMP; 
C A L L  M A T M U L T ( V ( * r * . O l r T E M P t S ( O I * r * l ) ;  
CALL TRANSOR(PHII*r*rMM)rTEMPI: 
T ( 0 9  * 
CALL 

* I =  Z* T (0 *t * I +T EMP I i 
MULTADD(V(  * * * e  MM) * T E M P *  S ( O t * r * I  I i S(O c***I=Z*S(3r*a*) i 

DO K = l  TO M i  
I F  K=M THEN DO; S A V E T = T I O * * r * ) :  S A V E S = S I O r * r * l ;  END; 
1 = 2 * * ( M - K 1 ;  T ( K * * r * ) * S ( K * * r * ) = O ;  
DO N = I  T O  ( H M - I )  BY L2*11: 

C A L L  T R A N S Q K ( P H 1  ( * r * t N l  *TEMP 1 i T ( K * * r * I =  T I K * * r * ) + T E M P ;  
C A L L  MULTADDiV(*r*rN)rTEMPrS(Kr*r*I I ;  END ; 

T ( K * * r * I  T L K - L r * r * J / Z  + Z * T (  KI*T*) i 
S I K * * r * I  = S I  K - l * * * * I  /2 + Z * S ( K r * , * l  ; 
z= z/2 : 
DO N=l TO K: 

T ( K - N r * . * I  = ( ( 4 * * N ) * T ( K - N + 1 r * r * l  - T ( K - N * * r * I I  / ( 4 * * Y - l ) ;  
S ( K - N * * * * I  = ( ( W * N I * S ( K - N + l * * r * )  - S ( K - N T * T * ) I  / ( 4 * * N - L ) i  EVD; 

END; 
C = T (  0. * r  * ) i D = S t  0 *, * 1 ; 

SAVET=ABSI  SAVET-C I : SAVES=ABS( SAVES-D);  
PUT S K I P  ED1 T (J  r N O R H ( S A V k S L  *NORM(SAVET I I ( X (  61 r F  (31 t 

X (  1 0 ) r E ~ 9 r Z r 3 l r X ~ l l t E ( 9 r 2 r 3 1 ) ~  
END ; / *  END OF ROMBERG */ 

E = C i  C A L L  M I N V ( C r D E T J ;  
I F  DET=O T H E N  DO; 

C A L L  M X O U T ( E * ' R E S U L T  O F  ROMBERG I N T E G R A T I O N  WAS S I N G U L A 3 ' 1  i 

P U T  S K I P ;  GO T O  F L U S H ;  END; 
CALL 
C A L L  HATMULT(BPIEILHOLD);  L H A T ( * r * r J r  I I = L H O L D ;  

MATMUL T ( D r  Ct E) ; I=MOD( I T E R *  2) ; 

END: / * F I R S T  BEGIN* /  
END YNTEG: 
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HATMULT: P R O C E D l J R E ( A r B * C ) ;  / *C=A*B ,  M A T R I X  I N D I C E S  S T A R T  WITH 1 */ 
DECLARE ( I r J , K r N T I M E S r N ) F I  XED9 1 A 9 3 3 C ! ( * r * )  r D ! * . * * * l r  

DO 1x1 T O  D I M ( A . 1 ) ;  
W J = l  TO D I M ( B r 2 ) ;  

NAME C H A R A C T E R ( 8 0 ) V A R Y I  NG; 

C ( I r J ) =  S U M ( A ( I r * ) * B ( * r J )  1; END; END; RETURN; 
M U T A D D :  E N T R Y ( A r B r C 1  ; /* C = C + A*B */ 

DO I =  1 T O  D I M ( A r 1 ) ;  
DO J= 1 T O  D I M ( B . 2 ) ;  

C (  I t  J)=C ( I  r J  1 + S L M [ A (  I r * 1  *B( * r  J )  1 i END; END; RETURN; 
TRANSPS: E N T R Y ~ A T B ) ;  /*  B = A TRANSPJSED */ 

DO I=1 T O  D I M I A + l ) ;  
DO J=l T O  D I M ( A r 2 1 ;  
B ( J r I ) = A l l r J ) ;  END; €NO; RE TURN ; 

TRANSOR: E N T R Y I A r B ) ;  /* 0 = A*A' */ 
D O  I=1 T O  D I H ( A + l ) i  

B I  I .  I J =  SUM(A [ I r * ) * A ( I r * )  1 i 
DO J = l  T O  (1 -1) ;  

B [  I ~ J ) T B (  J.I i= S U M ( A ( I T * J * A ( J I * ) ) ;  END; END; RETURN; 
NORM: E N T R Y I A )  FLOAT; / *  RETURNS NORM OF A * /  

RETURN(SQRT(  S U M ( A * A I  1/01 M ( A r  1 
MXOUT: E N T R Y I A r N A M E J :  / * P R I N T S  NAME AND M A T R I X * /  

IF NAME -= ' N U L L '  T H E N  PUT S K I P 1 2 1  L I S T I N A M E ) ;  
N=DIM(.A.21;  W I = l  TO D I M ( A . 1 ) ;  

1 ; 

PUT S K I P  E D I T ( I A ( I r J )  DO J= l  T O  N ) ) ( E ( l b r 5 r 6 ) ) ;  
EN D: RE TURN; 

k ? " n ~ :  E"!TRY!D,h lT !ME~.NAMF) :  / * P R I N T S  SEVERAL M A T R I C E S * /  
i F  ;&$tiE -.= 'MULL' TUE! PQT S K ! P I 3 1  L I S T ( N A M E ) ;  
N=D I M I  D r2 J ; 
D O  K=O T O  ( N T I H E S - 1 ) ;  PUT S K I P ( 2 1  EDIT('INTERVAL'rK)(ArF(3)); 

DO I=l TO D I H ( D r 1 ) ;  
PUT S K I P  E D I T I ( D ( I I J ~ K J  00 J = l  T O  N ) ) ( E t 1 6 r 5 r b ) ) ;  END; END; 

END MATMULT; 
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/ *  L I N E  35 * /  
I=H IK  1 ; 
IF I > K  THEN DO: JP=N* (  1-11; 

DO J=l TO N; JK=NK*J; J I = J P + J ;  
HOLD=-A(JK) ;  A ( J K ) = A (  JI); A ( J I ) = H O L D ;  EY 0; END; 

/ *  L I N E  45 * /  
i F  BIGA=O THEN DO: D=O; RETURN: END; 
D O  I = L  TO N: IF I -= K THEN DO; 

I K = N K + I :  A ( I K J = A ( I K ) / ( - B I G A ) ;  END; END; / *  L I N E  55 * /  
DO I=1 T O  N; [ K = N K + I ;  1 J z I - N ;  
W J = l  T O  N; I J = I J + N ;  I F  t - = K  & J-=K THEN DO; 

K J = I  J - I+K;  A (  IJ ) = A (  IK ) * A (  K J  ) + A (  I J 1 ; END; END; END; 
/ *  L I N E 6 5  * /  

K J=K-N 
D O  J=L TO N; K J = K J + N ;  

I)=D*BI GA; 

K= N: 

IF K>O THEN DO; I = L ( K ) ;  

IF J -= K T H E N  A ( K J I = A ( K J ) / B I G A ;  END: 
A (KK J =  1/8 IGA:  

END: /* L I N E 8 0  * /  
L100: K=K-1; 

IF I > K  THEN DO:  J * N * ( K - l ) ;  JR=N* (  1-1); 
D O  J = l  TO N; JK=JP+J; H O L D = A ( J K l ;  

J I = J R + J ;  A ( J K I = - A ( J I )  i A(  J I ) = H O L D ;  END ; 
J = H ( K ) ;  I F  J < = K  THEN Go TO L L O O ;  K 1 z K - N ;  
DO 1=1 TO N; K I = K I + N ;  H O L D = A ( K I l :  

GO TO L 1 0 0 ;  
J I = K I - K + J ;  A ( K I ) = - A I  JI): A ( J I ) =  HOLD; END; 

END; 

DO J = l  TO N: DO I = l  T O  N; B ( I I J ) = A ( J * Y - Y + I ) ;  END: 
/ *END OF SSP SUBROUTINE * /  

END; 
/ *M I N V */ END: 

END; 

E N3 : 
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